Problèmes de domino et entropie

Benjamin Hellouin de Menibus
LISN, Université Paris Saclay

Premières journées IZES

SFT, domino, (a)periodicity

Subshifts

\mathcal{A} a finite alphabet (\square, \square, sometimes \square);
\mathbb{Z}^{d} a d-dimensional grid;
\mathcal{A}^{*} finite patterns;
$\mathcal{A}^{\mathbb{Z}^{d}}$ infinite configurations (or tilings).

Subshift $X_{\mathcal{F}}$: the set of configurations without any forbidden pattern from a set $\mathcal{F} \subset \mathcal{A}^{*}$.

A pattern or configuration with no forbidden pattern is admissible.

Domino problem

Domino

Input A SFT (= alphabet + set of forbidden patterns)

Output Is there an admissible configuration?

Intuition

Equivalent to the existence of arbitrarily large admissible patterns.

$$
D\left(X_{\mathcal{F}}\right) \Leftrightarrow \forall n, \exists \text { admissible pattern of size } n
$$

Naturally Π_{1}^{0}-computable (= co-recursively enumerable)

Periodicity

A configuration x has period $\vec{v} \in \mathbb{Z}^{2}$ si

$$
x_{i+\vec{v}}=x_{i} \text { for all } i
$$

It is k-periodic if it admits k independent periods (and no more).

2

1

0
strongly periodic $:=d$-periodic; (strongly) aperiodic $:=0$-periodic

Domino problem

Domino

Input A SFT (= alphabet + set of forbidden patterns)
Output Is there an admissible configuration?
This problem is decidable for SFT that contain a strongly periodic configuration.

Algorithm

For n going from 1 to ∞ :

- List all patterns of size n.
- No admissible pattern: answer No.
- A d-periodic admissible pattern: answer Yes.
- Otherwise: continue.

Domino problem

This problem is decidable for SFT that contain a strongly periodic configuration.

Algorithm

For n going from 1 to ∞ :

- List all patterns of size n.
- No admissible pattern: answer No.
- A d-periodic admissible pattern: answer Yes.
- Otherwise: continue.

Dimension ≥ 2

The algorithm fails, and Domino is in fact Π_{1}^{0}-complete (Berger 66).
Embedding of universal computation in aperiodic SFT.

(A)periodic domino

Periodic domino problem

Periodic domino

Input A SFT (= alphabet + set of forbidden patterns)
Output Is there an admissible strongly periodic configuration?

Periodic domino problem

Periodic domino

Input A SFT (= alphabet + set of forbidden patterns)
Output Is there an admissible strongly periodic configuration?

Intuition

We look for a d-periodic admissible pattern:

$$
D P\left(X_{\mathcal{F}}\right) \Leftrightarrow \exists n, \exists \text { "periodic" admissible pattern of size } n
$$

Naturally Σ_{1}^{0}-computable (recursively enumerable).
in fact: it is Σ_{1}^{0}-complete in dimension ≥ 2.

Aperiodic domino problem

Aperiodic domino

Input A SFT (= alphabet + set of forbidden patterns)
Output Is there a strongly aperiodic admissible configuration?

Aperiodic domino problem

Aperiodic domino

Input A SFT (= alphabet + set of forbidden patterns)
Output Is there a strongly aperiodic admissible configuration?

Intuition

$$
D A\left(X_{\mathcal{F}}\right) \Leftrightarrow \exists \text { an admissible and aperiodic configuration }
$$

... quantifying on infinite objects.
Naturally Σ_{1}^{1}-computable (analytical).
...could it be arithmetic?

Aperiodic domino problem

Aperiodic domino
Input A SFT (= alphabet + set of forbidden patterns)
Output Is there a strongly aperiodic admissible configuration?

Theorem (Grandjean, H., Vanier)

The aperiodic domino is Π_{1}^{0} (co-recursively enumerable)-complete in dimension 2.

Theorem (Callard, H.)

The aperiodic domino is Σ_{1}^{1}-complete in dimension ≥ 4.

Arithmetisation

In dimension 2,

Shepherd's lemma

A SFT has a strongly aperiodic configuration.

For all n, there is an admissible $f(n) \times f(n)$ pattern that breaks every period of length $\leq n$ in a "concentric" manner.

Conclusion

Complexity jump in the aperiodic domino:

d	SFT	sofic	effectif
2	Π_{1}^{0}	Π_{1}^{0}	Π_{1}^{0}
3	$?$	Σ_{1}^{1}	Σ_{1}^{1}
≥ 4	Σ_{1}^{1}	Σ_{1}^{1}	Σ_{1}^{1}

- Σ_{1}^{1}-complete in general: unexpected.
- Complexity drops in dimension 2 for geometric reasons: unexpected.
- Conjecture: complexity drops in dimension 3 for other (SFT-specific) reasons - ongoing work with Callard \& Salo
- Huge complexity jump SFT / sofic? - would be unexpected.

Conclusion

Complexity jump in the aperiodic domino:

d	SFT	sofic	effectif
2	Π_{1}^{0}	Π_{1}^{0}	Π_{1}^{0}
3	$\boldsymbol{?}$	Σ_{1}^{1}	Σ_{1}^{1}
≥ 4	Σ_{1}^{1}	Σ_{1}^{1}	Σ_{1}^{1}

- Σ_{1}^{1}-complete in general: unexpected.
- Complexity drops in dimension 2 for geometric reasons: unexpected.
- Conjecture: complexity drops in dimension 3 for other (SFT-specific) reasons - ongoing work with Callard \& Salo
- Huge complexity jump SFT / sofic? - would be unexpected.

Open question (Callard, H. @Dyadisc)

Can we get any money from Fabien Durand's ANR with this stuff?

Domino with complexity promises

Domino with promises

Entropy

$$
h(X)=\lim \frac{\log \# \mathcal{L}_{n}(X)}{n^{d}}
$$

Domino with a positive entropy promise

Input A SFT that is empty or with positive entropy
Output Is there an admissible configuration?
This version, and the version with zero entropy, are equivalent to the domino.

Domino with promises

Entropy

$$
h(X)=\lim \frac{\log \# \mathcal{L}_{n}(X)}{n^{d}}
$$

Domino with a positive entropy promise

Input A SFT that is empty or with positive entropy
Output Is there an admissible configuration?
This version, and the version with zero entropy, are equivalent to the domino.
In dimension 2,

Theorem (Kari, Moutot)

The domino problem with a promise that $\mathcal{L}_{n}(X) \leq n^{2}$ for some n is decidable. The domino problem with a promise that $\mathcal{L}_{n}(X) \leq(1+\varepsilon) n^{2}$ is undecidable.

Aperiodic domino with a promise

Aperiodic domino with positive entropy promise

Input A SFT that is empty or with positive entropy
Output Is there a strongly aperiodic admissible configuration?

Aperiodic domino with a promise

Aperiodic domino with positive entropy promise

Input A SFT that is empty or with positive entropy
Output Is there a strongly aperiodic admissible configuration?

Theorem (Callard, H.)

In dimension d, if

$$
\limsup _{n} \frac{\log \# \mathcal{L}_{n}(X)}{n^{k}}=\infty,
$$

then X contains a point that is not $(d-k)$-periodic.
This is equivalent to the domino: much easier than the aperiodic domino. The version with a zero entropy promise is equivalent to the aperiodic domino.

Domino inside a subshift

X-domino

Let X be a subshift.
X-domino
Input A SFT Y
Output Is there a configuration in $X \cap Y$?
X-sofic domino
Input A sofic shift Y
Output Is there a configuration in $X \cap Y$?

In the zero entropy world

Minimal case

If X is minimal and decidable, then the X-domino is decidable.

In the zero entropy world

Minimal case

If X is minimal and decidable, then the X-domino is decidable.
In dimension 1,

Theorem (Salo)

The X-sofic domino problem for X a substitutive shift is decidable.
If X is a quasiminimal subshift, then X-sofic domino can be undecidable.

(Thanks to Marie-Pierre Béal)

Ongoing work with Pierre Béaur

X-sofic domino is decidable when X is any s-adic shift. (the sequence of substitutions can be fixed, arbitrary or regular)

In the nonzero entropy world

"The" undecidability proof

In dimension ≥ 2, if X factors onto a full shift, then X-domino is undecidable.

Theorem (Desai, extending Johnson \& Madden)

If X has positive entropy and is corner-gluing, then it factors onto a full shift.
There are counterexamples when removing the corner-gluing assumption (Boyle \& Schraudner).

Some naive questions

- In dimension 1, are there decidable subshifts where the X-domino is undecidable?

Kari's snakes, 2003

The X-sofic domino is undecidable where X is the 1d subshift on alphabet $\left\{a, b, a^{-1}, b^{-1}\right\}$ defined by:

$$
\mathcal{F}=\left\{w:|w|_{a}=|w|_{a^{-1}} \text { and }|w|_{b}=|w|_{b^{-1}}\right\} .
$$

(Thanks to Nicolás Bitar)

- Can we find general methods that do not depend on a substitutive structure?
- In dimension 2, any decidability results for interesting classes of (non-minimal) subshifts? for some positive entropy subshifts?

