Recent developments in finite alphabet rank S-adic sequences Rencontre IZES

Bastián Espinoza

Universidad de Chile Université de Picardie Jules Verne

November 14, 2022

- 1. Definitions
- 2. Finite alphabet rank \mathcal{S} -adic subshifts
- 3. Recent developments
 - Factors
 - Asymptotic pairs
- 4. \mathcal{S} -adic representations

1. Definitions

- 2. Finite alphabet rank S-adic subshifts
- 3. Recent developments
 - Factors
 - Asymptotic pairs
- 4. S-adic representations

An alphabet is a finite set A, a word w is a concatenation of letters a ∈ A, |w| is its length, etc.

- An alphabet is a finite set A, a word w is a concatenation of letters a ∈ A, |w| is its length, etc.
- **2** We denote the elements *x* of the **full-shift** $\mathcal{A}^{\mathbb{Z}}$ as follows:

 $x = \ldots x_{-3} x_{-2} x_{-1} \cdot x_0 x_1 x_1 \ldots$

- An alphabet is a finite set A, a word w is a concatenation of letters a ∈ A, |w| is its length, etc.
- **2** We denote the elements *x* of the **full-shift** $\mathcal{A}^{\mathbb{Z}}$ as follows:

$$x = \ldots x_{-3} x_{-2} x_{-1} \cdot x_0 x_1 x_1 \ldots$$

③ The **shift** in a **subshift** $X \subseteq \mathcal{A}^{\mathbb{Z}}$ is the map $S: X \to X$ given by

$$\ldots x_{-2}x_{-1} \cdot x_0 x_1 \cdots \mapsto \ldots x_{-1}x_0 \cdot x_1 x_2 \ldots$$

- An alphabet is a finite set A, a word w is a concatenation of letters a ∈ A, |w| is its length, etc.
- **2** We denote the elements *x* of the **full-shift** $\mathcal{A}^{\mathbb{Z}}$ as follows:

$$x = \ldots x_{-3} x_{-2} x_{-1} \cdot x_0 x_1 x_1 \ldots$$

③ The **shift** in a **subshift** $X \subseteq \mathcal{A}^{\mathbb{Z}}$ is the map $S: X \to X$ given by

$$\ldots x_{-2}x_{-1} \cdot x_0 x_1 \cdots \mapsto \ldots x_{-1}x_0 \cdot x_1 x_2 \ldots$$

We will consider only **minimal** subshifts X, *i.e.* s.t. every orbit orb_S(x) := {S^kx : k ∈ ℤ} is dense in X.

Definitions: S-adic subshifts

() For $n \ge 0$, let $\tau_n \colon \mathcal{A}_{n+1} \to \mathcal{A}_n^+$ be a map, which we call **substitution**.

• We define the extension $\tau_n \colon \mathcal{A}_{n+1}^+ \to \mathcal{A}_n^+$ by concatenation:

$$\tau_n(a_1a_2\ldots a_\ell)=\tau_n(a_1)\tau_n(a_2)\ldots \tau_n(a_\ell)$$

• Then, we can set $\tau_{[n,N]} = \tau_n \circ \tau_1 \circ \cdots \circ \tau_{N-1}$ for n < N.

Definitions: S-adic subshifts

9 For $n \ge 0$, let $\tau_n \colon \mathcal{A}_{n+1} \to \mathcal{A}_n^+$ be a map, which we call **substitution**.

• We define the extension $\tau_n \colon \mathcal{A}_{n+1}^+ \to \mathcal{A}_n^+$ by concatenation:

$$\tau_n(a_1a_2\ldots a_\ell)=\tau_n(a_1)\tau_n(a_2)\ldots \tau_n(a_\ell)$$

Then, we can set τ_{[n,N)} = τ_n ∘ τ₁ ∘ · · · ∘ τ_{N-1} for n < N.
2 Then, τ = (τ_n)_{n≥0} is called an *S*-adic sequence if

 $\lim_{n\to+\infty}\min_{a\in\mathcal{A}_n}|\tau_{[0,n)}(a)|=+\infty.$

Definitions: S-adic subshifts

9 For $n \ge 0$, let $\tau_n \colon \mathcal{A}_{n+1} \to \mathcal{A}_n^+$ be a map, which we call **substitution**.

• We define the extension $\tau_n \colon \mathcal{A}_{n+1}^+ \to \mathcal{A}_n^+$ by concatenation:

$$\tau_n(a_1a_2\ldots a_\ell)=\tau_n(a_1)\tau_n(a_2)\ldots \tau_n(a_\ell)$$

Then, we can set τ_{[n,N)} = τ_n ∘ τ₁ ∘ · · · ∘ τ_{N-1} for n < N.
2 Then, τ = (τ_n)_{n≥0} is called an *S*-adic sequence if

 $\lim_{n\to+\infty}\min_{a\in\mathcal{A}_n}|\tau_{[0,n)}(a)|=+\infty.$

We define the *n*-th S-adic subshift X_τ⁽ⁿ⁾ as follows:
 x ∈ X_τ⁽ⁿ⁾ iff ∀ℓ ≥ 0, ∃N > n, a ∈ A_N s.t. x_[-ℓ,ℓ] occurs in τ_{[n,N)}(a).
 We set X_τ := X_τ⁽⁰⁾.

Definitions: factorizations

Fact. ¹ For any n > 0 and x ∈ X_τ, there exists a τ_{[0,n)}-factorization of x in X_τ⁽ⁿ⁾, that is, k ∈ Z and y ∈ X_τ⁽ⁿ⁾ s.t.

$$x = S^{k} \tau_{[0,n)}(y) \text{ and } 0 \le k < |\tau_{[0,n)}(y_{0})|.$$

$$y = \dots \underbrace{0}_{k} \underbrace{1}_{k} \underbrace{0}_{k} \underbrace{0}_{k} \underbrace{1}_{k} \underbrace{0}_{k} \underbrace{1}_{k} \underbrace{0}_{k} \underbrace{1}_{k} \underbrace{0}_{k} \underbrace{1}_{k} \underbrace{0}_{k} \underbrace{1}_{k} \underbrace{1}_$$

Figure: Here, $\tau_{[0,n)}$: $\{0,1\} \rightarrow \{0,1\}^+$ maps $0 \mapsto 010$ and $1 \mapsto 01$.

¹See Recognizability for sequences of morphisms, 2020, Berthé et. al.

Definitions: factorizations

Fact. ¹ For any n > 0 and x ∈ X_τ, there exists a τ_{[0,n)}-factorization of x in X_τ⁽ⁿ⁾, that is, k ∈ Z and y ∈ X_τ⁽ⁿ⁾ s.t.

$$x = S^{k} \tau_{[0,n)}(y) \text{ and } 0 \le k < |\tau_{[0,n)}(y_{0})|.$$

$$y = \dots \underbrace{0}_{k} \underbrace{1}_{k} \underbrace{0}_{k} \underbrace{0}_{k} \underbrace{1}_{k} \underbrace{0}_{k} \underbrace{1}_{k} \underbrace{0}_{k} \underbrace{1}_{k} \underbrace{0}_{k} \underbrace{1}_{k} \underbrace{0}_{k} \underbrace{1}_{k} \underbrace{0}_{k} \underbrace{1}_{k} \underbrace{1}_$$

Figure: Here, $\tau_{[0,n)} \colon \{0,1\} \to \{0,1\}^+$ maps $0 \mapsto 010$ and $1 \mapsto 01$.

2 τ is **recognizable** if (k, y) is unique for all n > 0 and $x \in X_{\tau}$.

¹See Recognizability for sequences of morphisms, 2020, Berthé et. al.

Definitions: alphabet rank

1 The **alphabet rank** of au is

$$\mathsf{Alph} ext{-}\mathsf{Rank}({m au}) = \liminf_{n o \infty} \# \mathcal{A}_n.$$

Definitions: alphabet rank

1 The **alphabet rank** of au is

$$\mathsf{Alph}\mathsf{-Rank}(au) = \liminf_{n o \infty} \# \mathcal{A}_n.$$

- **2** A contraction of τ is an *S*-adic sequence of the form $\tau' = (\tau_{[0,n_1)}, \tau_{[n_1,n_2)}, \dots).$
- \bigcirc τ and τ' generate the same S-adic subshift X_{τ} .

Definitions: alphabet rank

1 The **alphabet rank** of au is

$$\mathsf{Alph}\mathsf{-Rank}(au) = \liminf_{n o \infty} \# \mathcal{A}_n.$$

- **2** A contraction of τ is an *S*-adic sequence of the form $\tau' = (\tau_{[0,n_1)}, \tau_{[n_1,n_2)}, \dots).$
- \bigcirc τ and τ' generate the same S-adic subshift X_{τ} .
- If Alph-Rank(τ) < ∞ , then there is a contraction $\tau' = (\tau_{[n_k, n_{k+1})})_{k \ge 0}$ s.t. $\# \mathcal{A}_{n_k} = \text{Alph-Rank}(\tau), \forall k \ge 1.$

1. Definitions

2. Finite alphabet rank $\mathcal S\text{-}\mathsf{adic}$ subshifts

- 3. Recent developments
 - Factors
 - Asymptotic pairs
- 4. S-adic representations

9 Framework: minimal subshifts X_{τ} , where τ has finite alphabet rank.

²Corollary 1.4 in *Symbolic factors of S-adic subshifts of finite alphabet rank, B. Espinoza, 2022.*

Bastián Espinoza

9/31

- **9** Framework: minimal subshifts X_{τ} , where τ has finite alphabet rank.
- ② $\tau: A \to B^+$ is **proper** if $\exists a, b \in B$ s.t. $\forall c \in A, \tau(c)$ starts with *a* and ends with *b*.
- $\tau = (\tau_n)_{n \ge 0}$ is proper if every τ_n is proper.

Bastián Espinoza

²Corollary 1.4 in Symbolic factors of *S*-adic subshifts of finite alphabet rank, *B*. Espinoza, 2022.

- **()** Framework: minimal subshifts X_{τ} , where τ has finite alphabet rank.
- ② $\tau: A \to B^+$ is **proper** if $\exists a, b \in B$ s.t. $\forall c \in A, \tau(c)$ starts with *a* and ends with *b*.
- $\tau = (\tau_n)_{n \ge 0}$ is proper if every τ_n is proper.
- For X a minimal subshift, the following are equivalent²:
 - $X = X_{ au}$ for some au s.t. Alph-Rank $(au) < +\infty$.
 - $X = X_{ au}$ for some recognizable and proper au s.t. Alph-Rank $(au) < +\infty$.

Bastián Espinoza

9/31

²Corollary 1.4 in Symbolic factors of S-adic subshifts of finite alphabet rank, B. Espinoza, 2022.

- **()** Framework: minimal subshifts X_{τ} , where τ has finite alphabet rank.
- ② $\tau: A \to B^+$ is **proper** if $\exists a, b \in B$ s.t. $\forall c \in A, \tau(c)$ starts with *a* and ends with *b*.
- $\tau = (\tau_n)_{n \ge 0}$ is proper if every τ_n is proper.
- For X a minimal subshift, the following are equivalent²:
 - $X = X_{ au}$ for some au s.t. Alph-Rank $(au) < +\infty$.
 - $X = X_{ au}$ for some recognizable and proper au s.t. Alph-Rank $(au) < +\infty$.

Definition

A minimal subshift X has **topological rank K** if K is the least number for which $X = X_{\tau}$ for some recognizable and proper τ s.t. Alph-Rank $(\tau) = K$.

Bastián Espinoza

²Corollary 1.4 in Symbolic factors of S-adic subshifts of finite alphabet rank, B. Espinoza, 2022.

- **()** Framework: minimal subshifts X_{τ} , where τ has finite alphabet rank.
- ② $\tau: A \to B^+$ is **proper** if $\exists a, b \in B$ s.t. $\forall c \in A, \tau(c)$ starts with *a* and ends with *b*.
- $\tau = (\tau_n)_{n \ge 0}$ is proper if every τ_n is proper.
- For X a minimal subshift, the following are equivalent²:
 - $X = X_{ au}$ for some au s.t. Alph-Rank $(au) < +\infty$.
 - $X = X_{ au}$ for some recognizable and proper au s.t. Alph-Rank $(au) < +\infty$.

Definition

A minimal subshift X has **topological rank** K if K is the least number for which $X = X_{\tau}$ for some recognizable and proper τ s.t. Alph-Rank $(\tau) = K$.

Framework: it is equivalent to work with finite top. rank subshifts.

²Corollary 1.4 in *Symbolic factors of S-adic subshifts of finite alphabet rank, B. Espinoza, 2022.*

Bastián Espinoza

The \mathcal{S} -adic framework

9/31

Examples of finite top. rank subshifts

substitutive and linearly recurrent subshifts;

- Sturmian, (natural codings of) minimal IET, dendric subshifts;
- some Toeplitz subshifts;
- subshifts X whose word-complexity function p_X has linear or non-superlinear growth;
- So for any $f: \mathbb{N} \to \mathbb{N}$ s.t. $\frac{1}{n} \log f(n) \to 0$ there exists X with finite top. rank and $p_X(n)/f(n) \to +\infty$.

Known properties of finite top. rank subshifts

Although the finite top. rank class contains a broad spectrum of minimal subshifts, it is possible to prove general theorems for it.

Known properties of finite top. rank subshifts

Although the finite top. rank class contains a broad spectrum of minimal subshifts, it is possible to prove general theorems for it. In a finite top.

rank subshift X_{τ} :

- the topological entropy is zero (Handelman-Boyle, '94);
- 2 the are only finitely many ergodic measures, and they can be computed from τ (Bezuglyi *et. al.* '13);
- ${f 0}$ the dimension group can be computed from au (Herman *et. al.*, '99);
- there is criteria stated in terms of τ for deciding if a given complex number is an eigenvalue (Durand *et. al.*, '19);
- among other properties and tools.

1. Definitions

2. Finite alphabet rank S-adic subshifts

3. Recent developments

- Factors
- Asymptotic pairs

4. S-adic representations

- 1. Definitions
- 2. Finite alphabet rank \mathcal{S} -adic subshifts
- 3. Recent developments
 - Factors
 - Asymptotic pairs
- 4. \mathcal{S} -adic representations

Let X be a minimal subshift.

Let (Y, T) be a topological dynamical system (or just system), that is, Y is a compact metrizable space and T: Y → Y is a homeomorphism.

Let X be a minimal subshift.

- Let (Y, T) be a topological dynamical system (or just system), that is, Y is a compact metrizable space and T: Y → Y is a homeomorphism.
- ② Example: if θ ∈ ℝ \ Q and T : ℝ/Z → ℝ/Z maps x into x + θ, then (ℝ/Z, T) is a system.

• this is an equicontinuous system.

Let X be a minimal subshift.

- Let (Y, T) be a topological dynamical system (or just system), that is, Y is a compact metrizable space and T: Y → Y is a homeomorphism.
- ② Example: if θ ∈ ℝ \ Q and T : ℝ/Z → ℝ/Z maps x into x + θ, then (ℝ/Z, T) is a system.
 - this is an equicontinuous system.
- **3** Example: (X, S) is a system.
 - this is an expansive system.

Let X be a minimal subshift.

- Let (Y, T) be a topological dynamical system (or just system), that is, Y is a compact metrizable space and T: Y → Y is a homeomorphism.
- **2** Example: if $\theta \in \mathbb{R} \setminus \mathbb{Q}$ and $T : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ maps x into $x + \theta$, then $(\mathbb{R}/\mathbb{Z}, T)$ is a system.
 - this is an equicontinuous system.
- **3** Example: (X, S) is a system.
 - this is an expansive system.
- A factor map of X is a continuous map $\pi: X \to Y$ s.t. $T\pi(x) = \pi(Sx), \forall x \in X$. Then, Y is a factor of X.
- Solution Factors are (topological) representations of X in Y.

Subshift factors

1 Suppose that *Y* is a subshift.

② (Curtis–Hedlund–Lyndon theorem) There exists $r \ge 0$ and $\phi: A^{2r+1} \rightarrow B$ s.t. π is described by

$$x = (x_n)_{n \in \mathbb{Z}} \mapsto \pi(x) = (\phi(x_{[n-r,n+r]}))_{n \in \mathbb{Z}}.$$

Then, *r* is the **radius** of π .

Subshift factors

Suppose that Y is a subshift.

② (Curtis–Hedlund–Lyndon theorem) There exists $r \ge 0$ and $\phi: A^{2r+1} \rightarrow B$ s.t. π is described by

$$x = (x_n)_{n \in \mathbb{Z}} \mapsto \pi(x) = (\phi(x_{[n-r,n+r]}))_{n \in \mathbb{Z}}$$

Then, r is the **radius** of π .

- Solution We first consider subshift factors of S-adic subshifts.
- Our framework: a minimal subshift X = X_τ s.t. τ = (τ_n: A_{n+1} → A⁺_n)_{n≥0} is recognizable, proper, and of finite alphabet rank.

Proposition (First representation of π)

Let $\pi: X_{\tau} \to Y$ be a subshift factor, with $Y \subseteq \mathcal{B}^{\mathbb{Z}}$. Then, there exist $\ell \geq 0$ and $\sigma: \mathcal{A}_{\ell} \to \mathcal{B}^+$ s.t.

If $x \in X_{\tau}$ and (k, y) is its $\tau_{[0,\ell)}$ -factorization in $X_{\tau}^{(\ell)}$, then $\pi(x) = S^k \sigma(y)$.

$$(a) |\sigma(a)| = |\tau_{[0,\ell)}(a)| \text{ for all } a \in \mathcal{A}_{\ell}.$$

Conversely, if σ and ℓ satisfy (2) then (1) defines a factor map π .

Subshift factors: S-representation

This is a representation of π with radius zero over an alphabet of size #A_ℓ.

Subshift factors: S-representation

This is a representation of π with radius zero over an alphabet of size #A_ℓ.

2 Note that Y is generated by $\sigma' = (\sigma, \tau_{\ell}, \tau_{\ell+1}, ...)$.

 \bullet σ' is proper and Alph-Rank $(\sigma') =$ Alph-Rank (τ) .

Subshift factors: S-representation

This is a representation of π with radius zero over an alphabet of size #A_ℓ.

2 Note that Y is generated by $\sigma' = (\sigma, \tau_{\ell}, \tau_{\ell+1}, ...)$.

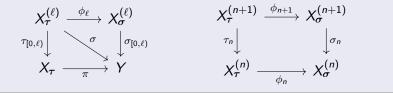
 \bullet σ' is proper and Alph-Rank $(\sigma') =$ Alph-Rank (τ) .

9 Problem: σ' is recognizable iff π is a conjugacy.

Subshift factors: S-representation

Theorem (E. 2021)

Up to a contraction of τ , there exist an *S*-adic sequence $\sigma = (\sigma_n : \mathcal{B}_{n+1} \to \mathcal{B}_n^+)_{n \ge 0}$ and morphisms $\phi_n : \mathcal{A}_n \to \mathcal{B}_n^+$ s.t. • $Y = X_{\sigma}, \sigma$ is proper, **recognizable**, Alph-Rank(σ) \le Alph-Rank(τ). • For $n \ge \ell$,



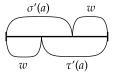
- **(**) Corollary: the top. rank of Y is at most the one of X_{τ} .
- One proof of the theorem is constructive and allows to compute σ and φ_n.

Bastián Espinoza

The \mathcal{S} -adic framework

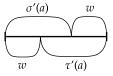
Subshift factors: application to substitutions

σ', τ': A → B⁺ are rotationally conjugate if there exists a word w s.t. σ(a)w = wτ(a) for all a ∈ A.



Subshift factors: application to substitutions

σ', τ': A → B⁺ are rotationally conjugate if there exists a word w s.t. σ(a)w = wτ(a) for all a ∈ A.



Proposition

Let $\tau: \mathcal{A} \to \mathcal{A}^+$, $\sigma: \mathcal{B} \to \mathcal{B}^+$ be primitive and proper substitutions. There exists a computable constant $n = n(\tau, \sigma)$ s.t. X_{σ} is a factor of X_{τ} iff there exist $\phi: \mathcal{A} \to \mathcal{B}^+$ and $p, q, r \leq n$ s.t.

1
$$\sigma^{p} \circ \phi$$
 and $\phi \circ \tau^{q}$ are rotationally conjugate;

2
$$| au^n({\sf a})|=|\sigma^r\phi({\sf a})|$$
 for all ${\sf a}\in {\cal A}.$

Subshift factors: substitutive case

- (Durand-Leroy '18) There is an algorithm that decides whether X_{σ} is a factor of X_{τ} .
- We obtain a new proof and thereby a new approach to describe factors of substitutive subshifts.

Subshift factors: substitutive case

- (Durand-Leroy '18) There is an algorithm that decides whether X_σ is a factor of X_τ.
- We obtain a new proof and thereby a new approach to describe factors of substitutive subshifts.

Question

Use this approach to continue exploring subshift factors of substitutive subshifts

Subshift factors: substitutive case

- (Durand-Leroy '18) There is an algorithm that decides whether X_σ is a factor of X_τ.
- We obtain a new proof and thereby a new approach to describe factors of substitutive subshifts.

Question

Use this approach to continue exploring subshift factors of substitutive subshifts or other classes with finite top. rank.

More on subshift factors

Suppose that the minimal subshift X has finite topological rank. • Any self factor $\pi: X \to X$ is invertible (*i.e.* X is coalescent).

 If π: X → Y is an infinite subshift factor, then ∃k ∈ N s.t. #π⁻¹(y) = k for almost all y ∈ Y.

Theorem

The number of subshift factors of X up to conjugacy is finite.

Suppose that X is a minimal subshift with finite top. rank.

Proposition: if $\pi: X \to Y$ is a factor and Y is totally disconnected, then Y is either a subshift or an odometer.

Suppose that X is a minimal subshift with finite top. rank.

- Proposition: if π: X → Y is a factor and Y is totally disconnected, then Y is either a subshift or an odometer.
- Problem: what can be said about other type of factors?

Suppose that X is a minimal subshift with finite top. rank.

- Proposition: if π: X → Y is a factor and Y is totally disconnected, then Y is either a subshift or an odometer.
- Problem: what can be said about other type of factors?

Question

What can be said of factors $\pi: X \to Y$ s.t. Y is a **connected** topological space?

- This case correspond to a geometrical representation of X.
- It is oppposite to the totally disconnected case.
- It is a direction that has not been explored even in the substitutive case.

- 1. Definitions
- 2. Finite alphabet rank \mathcal{S} -adic subshifts
- 3. Recent developments
 - Factors
 - Asymptotic pairs
- 4. \mathcal{S} -adic representations

Asymptotic pairs

• A (centered) asymptotic pair in X is a tuple $(x, y) \in X \times X$ s.t. $x_{(-\infty,0)} = y_{(-\infty,0)}$ and $x_0 \neq y_0$.

Theorem (E., Maass, 2020)

Let $\boldsymbol{\tau} = (au_n \colon \mathcal{A}_{n+1} o \mathcal{A}_n^+)_{n \geq 0}$ be such that

$$Alph-Rank(\tau) = \liminf_{n \to +\infty} \#\mathcal{A}_n < \infty.$$

Then, X_{τ} has finitely many asymptotic pairs.

Asymptotic pairs

• A (centered) asymptotic pair in X is a tuple $(x, y) \in X \times X$ s.t. $x_{(-\infty,0)} = y_{(-\infty,0)}$ and $x_0 \neq y_0$.

Theorem (E., Maass, 2020)

Let $\boldsymbol{\tau} = (au_n \colon \mathcal{A}_{n+1} o \mathcal{A}_n^+)_{n \geq 0}$ be such that

$$Alph-Rank(au) = \liminf_{n \to +\infty} \# \mathcal{A}_n < \infty.$$

Then, X_{τ} has finitely many asymptotic pairs.

- ② This extends a previous result by Donoso et. al. from 2016.
- Solution The theorem can be used to bound the number of automorphisms and symbolic factors of X_τ in the minimal case.

1. Definitions

- 2. Finite alphabet rank \mathcal{S} -adic subshifts
- 3. Recent developments
 - Factors
 - Asymptotic pairs
- 4. \mathcal{S} -adic representations

Let X be a minimal subshift.

1 The complexity function $p_X \colon \mathbb{N} \to \mathbb{N}$ is defined by

 $p_X(n) = N^\circ$ of words of length *n* occurring in at least one $x \in X$.

2 X has linear growth if

$$\limsup_{n\to+\infty} p_X(n)/n < +\infty.$$

3 X has non-superlinear growth if

$$\liminf_{n\to+\infty}p_X(n)/n<+\infty.$$

Linear growth subshifts

- The **root** root(w) of a word w is the shortest word v such that $w = v^k$ for some $k \ge 1$.
- Example: root(*ababab*) = *ab* and root(*ababababa*) = *ababababa*.

Theorem

A minimal subshift X has linear growth if and only if there exist $C \ge 1$ and an S-adic sequence $\tau = (\tau_n : \mathcal{A}_{n+1}^+ \to \mathcal{A}_n)_{n \ge 0}$ generating X such that for every $n \ge 1$:

• $\operatorname{root}(\tau_{[0,n)}(\mathcal{A}_n)) := \{\operatorname{root}(\tau_{[0,n)}(a)) : a \in \mathcal{A}_n\}$ has at most C elements;

②
$$| au_{[0,n)}(\mathsf{a})| \leq C \cdot | au_{[0,n)}(b)|$$
 for every $\mathsf{a}, \mathsf{b} \in \mathcal{A}_n$;

3
$$| au_n(a)| \leq C$$
 for every $a \in \mathcal{A}_n$.

Linear growth subshifts

The previous characterization allows to recover known results about linear growth subshifts.

2 Cassaigne's Theorem: $p_X(n+1) - p_X(n)$ is bounded.

• X has finitely many ergodic measures.

• X has finite topological rank.

Theorem

A minimal subshift X has non-superlinear growth if and only if there exist $C \ge 1$ and an S-adic sequence $\tau = (\tau_n \colon \mathcal{A}_{n+1}^+ \to \mathcal{A}_n)_{n \ge 0}$ generating X such that for every $n \ge 1$:

- $\operatorname{root}(\tau_{[0,n)}(\mathcal{A}_n)) = \{\operatorname{root}(\tau_{[0,n)}(a)) : a \in \mathcal{A}_n\}$ has at most C elements;
- $2 |\tau_{[0,n)}(a)| \leq C \cdot |\tau_{[0,n)}(b)| \text{ for every } a, b \in \mathcal{A}_n.$

Observations

• The conditions depend on the unbounded product $\tau_{[0,n)}$, and thus are "non-local".

Question

Is it possible to obtain a "local" characterization of subshifts with linear growth?

Cocal" characterizations have been obtained for other classes, such as Sturmian, IET, and dendric.

Recent developments in finite alphabet rank S-adic sequences Rencontre IZES

Bastián Espinoza

Universidad de Chile Université de Picardie Jules Verne

November 14, 2022