LANGUAGES OF GENERAL INTERVAL EXCHANGES

S. Ferenczi, P. Hubert, L.Q. Zamboni

STANDARD INTERVAL EXCHANGES

Natural coding (for a given choice of γ_{i}, which determines their images β_{j}).
\mathcal{A} finite alphabet, $x \in[0,1[$,
$x \rightarrow\left(x_{n}\right) \in \mathcal{A}^{\mathbb{Z}}$ where $x_{n}=e$ if $T^{n} x$ falls into interval number e.

RAUZY's QUESTION

Characterize the languages generated by natural codings of iet.

Morse - Hedlund 1940 + Coven - Hedlund 1973 for irrational rotations (= standard 2 -iet), defining Sturmian languages.

Ferenczi - Zamboni 2008 for i.d.o.c. standard iet.
(Kanel) Belov - Chernyatev 2010 for standard iet and standard iet with flips. The minimal cases are also characterized.

ORDER CONDITION

A language L satisfies an order condition if
there exist two (total) orders on \mathcal{A}, denoted by $<_{A}$ and $<_{D}$, such that whenever $a w, b w, w c, w d$ are in L for a word w and letters $a \neq b$ and $c \neq d(w$ is called bispecial), then if $a<_{A} b, c<_{D} d$, either $a w d$ or bwc (or both) is not in L.

Every iet language satisfies an order condition

DENDRIC LANGUAGES

For a bispecial w, let $A=\{a \in \mathcal{A} ; a w \in L\}, D=\{b \in \mathcal{A} ; w b \in L\}$
w is a weak bispecial if $\#\{a w b \in L, a \in \mathcal{A}, b \in \mathcal{A}\}<\# A+\# D-1$
w is a locally strong bispecial if there exist $A^{\prime} \subset A, D^{\prime} \subset D, \#\{a w b \in L, a \in$ $\left.\mathcal{A}^{\prime}, b \in \mathcal{D}^{\prime}\right\}>\# A^{\prime}+\# D^{\prime}-1$.

A language is dendric <=> no weak bispecial and no locally strong bispecial.

The order condition implies (strictly) the absence of strong bispecials, but allows the presence of finitely many weak bispecials.

STANDARD CRITERION

Theorem (Belov?) L is the natural coding of a standard iet <=>

- order condition
- recurrence: for each $w \in L$ there exists a nonempty $v \in L$, such that $w v$ ends with w.

Proof

Order conditions plus recurrence imply L is a union of finitely many uniformly recurrent (possibly periodic) languages.
Then one can build an invariant measure positive on all cylinders.
Take the iet T with the same orders and I_{i} of length $\mu[i]$.
The natural coding of T has the same words of length 1, 2, 3 ...as L (Morse Hedlund for 2 intervals).

AFFINE IET

Is the order condition alone enough to make L the language of a standard iet? NO.

Counter-example Fake Sturmian: L generated by ...22221111....

BUT L is the natural coding of an affine iet.

GROUPED CODINGS

Is the order condition alone enough to make L the natural coding of an affine iet? NO.

Counter-example Skew Sturmian: L generated by ...11112111....

BUT L is a grouped coding of an affine iet.

GENERALIZED IET

Is the order condition alone enough to make L a coding of an affine iet? NO.

Counter-example Skew Arnoux-Rauzy: L generated by the doubly infinite sequence $\bar{y} 3 y$,
y the Fibonacci sequence on 1 and 2, fixed point of the substitution $1 \rightarrow 12$, $2 \rightarrow 1$,
\bar{y} its retrograde,

BUT L is the natural coding of a generalized iet (continuous increasing maps from $[j]$ to $T[j]$).

AND FINALLY

Main theorem L is the natural coding of a generalized iet <=> order condition.

Proof

We build canonically the language L^{\prime} generated by (left and right) recurrent orbits, it is the natural coding of a standard iet T^{\prime}.
We build T from T^{\prime} by a Denjoy blow-up.
For SAR, T^{\prime} is a rotation, and we blow up two points.

Note that for $\mathrm{SS} T^{\prime}$ is the identity on I_{1} coded by 1: the dream of the Marseille school.

AFFINE CRITERION

Theorem L is the natural coding of an affine iet =>

- order condition
- there exist $\theta_{i}, i \in \mathcal{A}$, such that for each non recurrent bi-infinite word z in X_{L},

$$
\begin{gather*}
\sum_{n \geq 0} \exp \sum_{j=0}^{n} \theta_{z_{j}}<+\infty \tag{1}\\
\sum_{n>0} \exp -\sum_{j=-n}^{-1} \theta_{z_{j}}<+\infty \tag{2}
\end{gather*}
$$

=> L is a grouped coding of an affine iet.

LOOKING FOR COUNTER-EXAMPLES

Affine natural coding but not standard. Possible from many aperiodic T^{\prime}, by CamelierGuttierez, Cobo, Bressaud-Hubert-Maass, Marmi-Moussa-Yoccoz.

Grouped but not natural affine. Maybe only in (ultimately) periodic cases?
Generalized but not natural affine. When T^{\prime} is the iet associated to some squaretiled surfaces, the Eierlegende Wollmilch Sau and the Ornithorynque.

TWO FAMILIES

Proposition $L=$ natural coding of a generalized iet T,
L non recurrent, L^{\prime} aperiodic uniformly recurrent, the two orders of L^{\prime} are cyclically conjugate.
Then T cannot be of class P , hence is not affine.
Class $\mathrm{P}=$ except on a countable set of points, $D T$ exists and $D T=h$ where h is a function with bounded variation, and $|h|$ is bounded from below by a strictly positive number.

Proposition $L^{\prime}=$ natural coding of a standard non purely periodic iet, a, b letters,
$w_{n}=a w_{n}^{\prime} b$ bispecial words in L^{\prime},
u ending with w_{n} for all n,
v beginning with w_{n} for all n,
ω an extra symbol,
L generated by L^{\prime} and $u \omega v$.
Then L is a natural coding of a generalized iet, but not a grouped (or natural) coding of an affine iet.

OPEN PROBLEMS

Conjecture Natural coding of an affine iet <=> order condition, conditions (1) and (2] for each non recurrent bi-infinite word.

Example L generated by ...332332331331.... and ...413241324132...

Question Grouped coding of an affine iet <=> order condition, condition (1) for each non recurrent bi-infinite word which is not ultimately periodic to the right, condition (2) for each non recurrent bi-infinite word which is not ultimately periodic to the left ?

Conjecture Every word in a iet language is a word of a natural coding of an affine iet.

Question Languages of piecewise isometries?

IET WITH FLIPS

All results will remain, with a flipped order condition: for a bispecial w, write the order condition with $<_{A}$ and

- $<_{D}$ if w contains an even number of flipped letters
- $<_{D}$ reversed otherwise.

