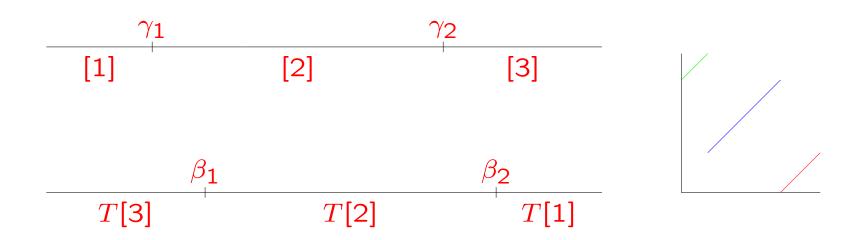
LANGUAGES OF GENERAL INTERVAL EXCHANGES

S. Ferenczi, P. Hubert, L.Q. Zamboni

STANDARD INTERVAL EXCHANGES



Natural coding (for a given choice of γ_i , which determines their images β_j).

 \mathcal{A} finite alphabet, $x \in [0, 1[,$

 $x \to (x_n) \in \mathcal{A}^{\mathbb{Z}}$ where $x_n = e$ if $T^n x$ falls into interval number e.

RAUZY's QUESTION

Characterize the languages generated by natural codings of iet.

Morse - Hedlund 1940 + Coven - Hedlund 1973 for irrational rotations (= standard 2-iet), defining Sturmian languages.

Ferenczi - Zamboni 2008 for *i.d.o.c.* standard iet.

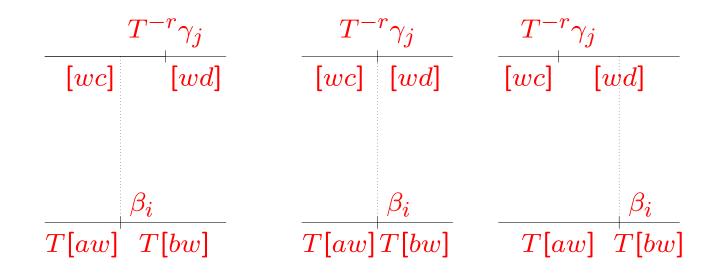
(Kanel) Belov - Chernyatev 2010 for standard iet and standard iet with flips. The minimal cases are also characterized.

ORDER CONDITION

A language *L* satisfies an order condition if

there exist two (total) orders on \mathcal{A} , denoted by $<_A$ and $<_D$, such that whenever aw, bw, wc, wd are in L for a word w and letters $a \neq b$ and $c \neq d$ (w is called bispecial), then if $a <_A b$, $c <_D d$, either awd or bwc (or both) is not in L.

Every iet language satisfies an order condition



T^{-}	$T^r \gamma_j T^{-r}$	$\gamma_{j+1}T^{-\eta}$	γ_{j+2}	T	$r\gamma_{j+3}$
$[wb_1]$	[wb ₂]	[wb ₃]		[wb4]	$[wb_5]$
eta_i			β_{i+1}	β_{i+2}	β_{i+3}
$T[a_1w]$	$T[a_2w]$]	$T[a_{3}w]$] $T[a_4w]$	$T[a_5w]$

DENDRIC LANGUAGES

For a bispecial w, let $A = \{a \in \mathcal{A}; aw \in L\}, D = \{b \in \mathcal{A}; wb \in L\}$

w is a weak bispecial if $\#\{awb \in L, a \in A, b \in A\} < \#A + \#D - 1$

w is a locally strong bispecial if there exist $A' \subset A$, $D' \subset D$, $\#\{awb \in L, a \in A', b \in D'\} > \#A' + \#D' - 1$.

A language is <u>dendric</u> <=> no weak bispecial and no locally strong bispecial.

The order condition implies (strictly) the absence of strong bispecials, but allows the presence of finitely many weak bispecials.

STANDARD CRITERION

<u>Theorem</u> (Belov?) L is the natural coding of a standard iet <=>

- order condition

- recurrence: for each $w \in L$ there exists a nonempty $v \in L$, such that wv ends with w.

Proof

Order conditions plus recurrence imply L is a union of finitely many uniformly recurrent (possibly periodic) languages.

Then one can build an invariant measure positive on all cylinders.

Take the iet T with the same orders and I_i of length $\mu[i]$.

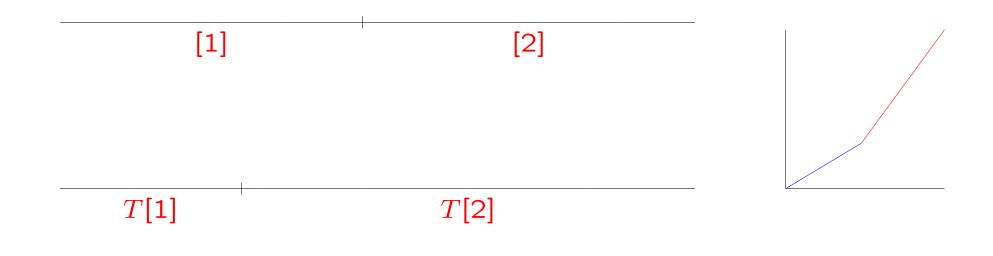
The natural coding of T has the same words of length 1, 2, 3 ... as L (Morse - Hedlund for 2 intervals).

AFFINE IET

Is the order condition alone enough to make L the language of a standard iet? NO.

Counter-example Fake Sturmian: *L* generated by ...22221111....

BUT L is the natural coding of an <u>affine</u> iet.

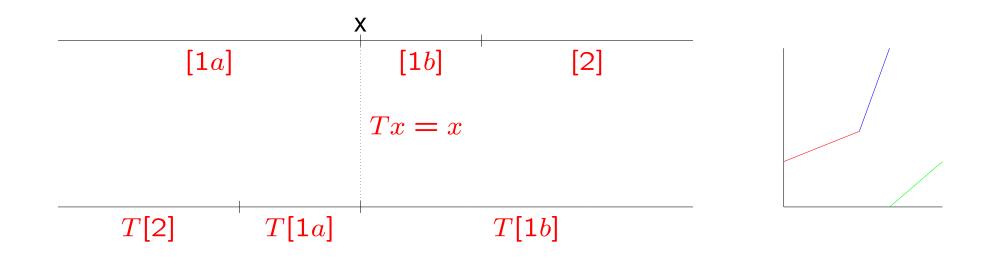


GROUPED CODINGS

Is the order condition alone enough to make L the natural coding of an affine iet? NO.

Counter-example Skew Sturmian: *L* generated by ...11112111....

BUT L is a grouped coding of an affine iet.



GENERALIZED IET

Is the order condition alone enough to make L a coding of an affine iet? NO.

Counter-example Skew Arnoux-Rauzy: *L* generated by the doubly infinite sequence $\overline{y}3y$,

y the Fibonacci sequence on 1 and 2, fixed point of the substitution $1 \rightarrow 12$, $2 \rightarrow 1$,

 \overline{y} its retrograde,

BUT L is the natural coding of a <u>generalized</u> iet (continuous increasing maps from [j] to T[j]).

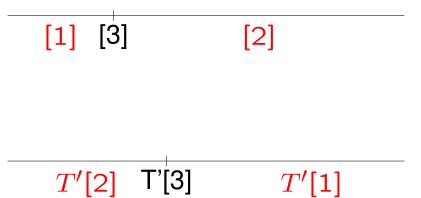
AND FINALLY

<u>Main theorem</u> L is the natural coding of a generalized iet $\langle = \rangle$ order condition.

Proof

We build canonically the language L' generated by (left and right) recurrent orbits, it is the natural coding of a standard iet T'. We build T from T' by a Denjoy blow-up.

For SAR, T' is a rotation, and we blow up two points.



Note that for SS T' is the identity on I_1 coded by 1: the dream of the Marseille school.

AFFINE CRITERION

<u>Theorem L</u> is the natural coding of an affine iet =>

- order condition
- there exist θ_i , $i \in \mathcal{A}$, such that for each non recurrent bi-infinite word z in X_L ,

$$\sum_{n\geq 0} \exp\sum_{j=0}^{n} \theta_{z_j} < +\infty.$$
(1)

$$\sum_{n>0} \exp - \sum_{j=-n}^{-1} \theta_{z_j} < +\infty.$$
 (2)

=> *L* is a grouped coding of an affine iet.

LOOKING FOR COUNTER-EXAMPLES

Affine natural coding but not standard. Possible from many aperiodic T', by Camelier-Guttierez, Cobo, Bressaud-Hubert-Maass, Marmi-Moussa-Yoccoz.

Grouped but not natural affine. Maybe only in (ultimately) periodic cases?

<u>Generalized but not natural affine</u>. When T' is the iet associated to some squaretiled surfaces, the Eierlegende Wollmilch Sau and the Ornithorynque.

TWO FAMILIES

Proposition L = natural coding of a generalized let T,

L non recurrent,

L' aperiodic uniformly recurrent,

the two orders of L' are cyclically conjugate.

Then T cannot be <u>of class P</u>, hence is not affine.

Class P = except on a countable set of points, DT exists and DT = h where h is a function with bounded variation, and |h| is bounded from below by a strictly positive number.

Proposition L' = natural coding of a standard non purely periodic iet, a, b letters,

 $w_n = a w'_n b$ bispecial words in L',

u ending with w_n for all n,

- v beginning with w_n for all n,
- ω an extra symbol,
- L generated by L' and $u\omega v$.

Then L is a natural coding of a generalized iet, but not a grouped (or natural) coding of an affine iet.

OPEN PROBLEMS

Conjecture Natural coding of an affine iet <=> order condition, conditions (1) and (2] for each non recurrent bi-infinite word.

Example *L* generated by ...332332331331.... and ...413241324132...

Question Grouped coding of an affine iet <=> order condition,

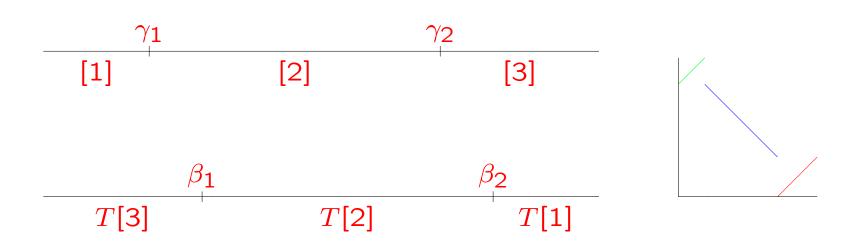
condition (1) for each non recurrent bi-infinite word which is not ultimately periodic to the right,

condition (2) for each non recurrent bi-infinite word which is not ultimately periodic to the left ?

Conjecture Every word in a iet language is a word of a natural coding of an affine iet.

Question Languages of piecewise isometries?

IET WITH FLIPS



<u>All</u> results will remain, with a <u>flipped order condition</u>: for a bispecial w, write the order condition with $<_A$ and

- $<_D$ if w contains an even number of flipped letters
- $<_D$ reversed otherwise.