A different family of graphs to characterize dendric shift spaces

France Gheeraert

Joint work with Julien Leroy

November, 2022

Two families of graphs

Extensions

Left and right extensions:

 $E_X^L(w) = \{ a \in \mathcal{A} \mid aw \in \mathcal{L}(X) \}, \quad E_X^R(w) = \{ b \in \mathcal{A} \mid wb \in \mathcal{L}(X) \}$ If $\#E_X^L(w) \ge 2$, w is said to be *left special*. If $\#E_X^R(w) \ge 2$, w is said to be *right special*. If w is left and right special, w is said to be *bispecial*.

Bi-extensions:

$$E_X(w) = \{(a, b) \in E_X^L(w) \times E_X^R(w) \mid awb \in \mathcal{L}(X)\}$$

Extension graphs

Definition

The extension graph of $w \in \mathcal{L}(X)$ is the bipartite graph $\mathcal{E}_X(w)$ with vertices $E_X^L(w) \sqcup E_X^R(w)$ and edges $E_X(w)$.

If X is the Fibonacci shift space,

Graphs $G_n^L(X)$ and $G_n^R(X)$

Definition

For $n \in \mathbb{N}$, $G_n^{L(resp.R)}(X)$ is defined as follows:

- $\bullet\,$ the vertices are the elements of ${\cal A},$
- there is an edge labeled by $v \in \mathcal{L}_n(X)$ between a and b if $a, b \in E^{L(resp.R)}(v)$.

If X is the Tribonacci shift space, $G_n^L(X)$ is a clique of size 3. If X is the Thue-Morse shift space,

Link between the two

Lemma

$$\mathcal{E}_X(u)$$
 contains the path $a_1^L \to b_1^R \to a_2^L \dots \to b_k^R \to a_{k+1}^L$ iff $G_{|u|+1}^L(X)$ contains the path $a_1 \xrightarrow{ub_1} a_2 \dots \xrightarrow{ub_k} a_{k+1}$.

France Gheeraert

Graphs $G^{L}(X)$ and $G^{R}(X)$

Acyclicity

Observations:

- If $\mathcal{E}_X(u)$ contains a cycle, then $G_{|u|+1}^L(X)$ contains a cycle using edges of different colors.
- If G^L_{n+1}(X) contains a cycle using edges of different colors, then there exists p ∈ L_{≤n}(X) such that E_X(p) contains a cycle.

France Gheeraert

Graphs $G^{L}(X)$ and $G^{R}(X)$

Acyclicity (2)

Definition

A graph with colored edges is *acyclic for the coloring* if any cycle only uses edges of one color.

Proposition

Let $N \in \mathbb{N}$. The following are equivalent:

- for all $u \in \mathcal{L}_{\leq N}(X)$, $\mathcal{E}_X(u)$ is acyclic,
- **2** for all $n \leq N + 1$, $G_n^L(X)$ is acyclic for the coloring,
- for all $n \leq N + 1$, $G_n^R(X)$ is acyclic for the coloring.

Consequences of acyclicity

If $\mathcal{E}_X(u)$ is acyclic for all $u \in \mathcal{L}_{\leq N}(X)$, then

- $G_{n+1}^{L}(X)$ is a "subgraph" of $G_{n}^{L}(X)$,
- if $\mathcal{E}_X(u)$ contains the path $a_1^L \to b_1^R \to a_2^L \dots \to b_{k-1}^R \to a_k^L$, then for all $n \ge |u| + 1$, any path connecting a_1 to a_k in $G_n^L(X)$ passes through a_2, \dots, a_{k-1} .

Graphs $G^{L}(X)$ and $G^{R}(X)$

Connectedness

Proposition

Let $N \in \mathbb{N}$. If $\mathcal{E}_X(u)$ is acyclic for all $u \in \mathcal{L}_{\leq N}(X)$, then the following are equivalent:

- for all $u \in \mathcal{L}_{\leq N}(X)$, $\mathcal{E}_X(u)$ is connected,
- 2 for all $n \leq N + 1$, $G_n^L(X)$ is connected,

- for all $n \leq N + 1$, $G_n^R(X)$ is connected,
- $G_{N+1}^R(X)$ is connected.

Dendricity

Definition (Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone)

A word $u \in \mathcal{L}(X)$ is *dendric* (in X) if $\mathcal{E}_X(u)$ is a tree.

A shift space X is *dendric* if all the elements of $\mathcal{L}(X)$ are dendric.

Proposition

The following are equivalent:

- X is dendric,
- **2** for all $n \in \mathbb{N}$, $G_n^L(X)$ is acyclic for the coloring and connected,
- **③** for all $n \in \mathbb{N}$, $G_n^R(X)$ is acyclic for the coloring and connected.

Limit behavior

Stabilization

Proposition (Consequence of Dolce, Perrin) If X is eventually dendric, there exists N such that for all $n \ge N$, $G_n^L(X) \cong G_N^L(X)$ and $G_n^R(X) \cong G_N^R(X)$.

A shift space X is *eventually dendric* if all the long enough elements of $\mathcal{L}(X)$ are dendric.

Definition

If it exists, we denote

$$G^{L}(X) \cong \lim_{n} G^{L}_{n}(X)$$
 and $G^{R}(X) \cong \lim_{n} G^{R}_{n}(X)$.

Examples

Arnoux-Rauzy:

The graphs $G^{L}(X)$ and $G^{R}(X)$ are cliques of size #A.

Interval exchanges:

The graphs $G^{L}(X)$ and $G^{R}(X)$ are line graphs.

Graphs $G^{L}(X)$ and $G^{R}(X)$

Chacon ternary shift

The Chacon ternary shift space X is generated by the morphism

$$\sigma: \mathbf{0} \mapsto \mathbf{0012}, \mathbf{1} \mapsto \mathbf{12}, \mathbf{2} \mapsto \mathbf{012}.$$

- X is not eventually dendric. [Dolce, Perrin]
- The factor complexity of X is $p_n(X) = 2n + 1$. [Ferenczi]

 $E_X^L(0) = \{0,2\} = E_X^L(1)$ and $E_X^R(0) = \{0,1\} = E_X^L(2)$ thus

Asymptotic pairs

In X is eventually dendric, the $G^{L}(X)$ is also defined as follows:

- the vertices are the elements of \mathcal{A} ,
- there is an edge labeled by $x \in \mathcal{A}^{\mathbb{N}}$ between *a* and *b* if there exist $y, y' \in \mathcal{A}^{-\mathbb{N}}$ such that $yax, y'bx \in X$.

For the Chacon shift space, the two definitions are different.

S-adic characterization of dendric shift spaces

Return morphisms

Definition

A return morphism for $w \neq \varepsilon$ is an injective morphism $\sigma : \mathcal{A}^* \to \mathcal{B}^*$ such that, for all $a \in \mathcal{A}$,

$$|\sigma(a)w|_w = 2, \quad \sigma(a)w \in w\mathcal{B}^*.$$

$$\sigma : \begin{cases} 0 \mapsto 010 \\ 1 \mapsto 0210 \\ 2 \mapsto 0222210 \end{cases} \quad \tau : \begin{cases} 0 \mapsto 0101 \\ 1 \mapsto 01001 \\ 2 \mapsto 01021001 \end{cases}$$

S-adic representations

Definition

A primitive *S*-adic representation of a minimal shift space X is a primitive sequence of morphisms $(\sigma_n : \mathcal{A}_{n+1}^* \to \mathcal{A}_n^*)_n$ such that

$$\mathcal{L}(X) = \bigcup_{N} \operatorname{Fac}(\sigma_0 \dots \sigma_N(\mathcal{A}_{N+1})).$$

Proposition (Berthé *et al.*)

Every minimal dendric shift space over \mathcal{A} has a primitive S-adic representation such that

- the morphisms are return morphisms over A,
- the intermediary shift spaces are dendric.

Dendric images

Theorem (G., Lejeune, Leroy)

Let X be a dendric shift space and σ a return morphism for w. Then $\sigma(X)$ is dendric if and only if

'l' for all $u \in \mathcal{L}(\sigma(\mathcal{A})w)$ st. $|u|_w = 0$, u is dendric in $\mathcal{L}(\sigma(\mathcal{A})w)$,

'L' for all $s \in A^*$ and for all $v \in \mathcal{L}(X)$, when removing in $\mathcal{E}_X(v)$ the left vertices in

$$\mathcal{A}_{s}^{\mathcal{L}} := \{ a \in \mathcal{A} \mid \sigma(a) \notin \mathcal{A}^{*}s \},\$$

the other left vertices remain connected,

'R' for all $p \in A^*$ and for all $v \in \mathcal{L}(X)$, when removing in $\mathcal{E}_X(v)$ the right vertices in

$$\mathcal{A}_{p}^{R} := \{ a \in \mathcal{A} \mid \sigma(a) w \notin p \mathcal{A}^{*} \},$$

the other right vertices remain connected.

Dendric images using $G^{L}(X)$ and $G^{R}(X)$

Theorem

Let X be a dendric shift space and σ a return morphism for w. Then $\sigma(X)$ is dendric if and only if

'l' for all $u \in \mathcal{L}(\sigma(\mathcal{A})w)$ st. $|u|_w = 0$, u is dendric in $\mathcal{L}(\sigma(\mathcal{A})w)$,

- 'L' for all $s \in A^*$, when removing in $G^L(X)$ the vertices in A_s^L , the graph remains connected,
- 'R' for all $p \in A^*$, when removing in $G^R(X)$ the vertices in A_p^R the graph remains connected.

Image graph

Proposition

Let σ be a return morphism and let G be a colored graph. We can define in a constructive way the graphs

- $\sigma^{L} \cdot G$ such that, for all eventually dendric shift space X with $G^{L}(X) = G$, we have $G^{L}(\sigma(X)) = \sigma^{L} \cdot G$,
- $\sigma^R \cdot G$ such that, for all eventually dendric shift space X with $G^R(X) = G$, we have $G^R(\sigma(X)) = \sigma^R \cdot G$.

S-adic characterization

Let S be a set of return morphisms over A satisfying 'l'. The graph $\mathcal{G}^{L(resp.R)}(S)$ is defined as follows:

- its set of vertices is
 {
 G^{L(resp.R)}(X) | X dendric shift space over A},
- there is an edge labeled by σ ∈ S from σ^{L(resp.R)} · G to G if G satisfies condition 'L'(resp. 'R') for σ.

Theorem

Let X be a shift space having a primitive S-adic representation $\sigma = (\sigma_n)_n$ where σ_n is a return morphism for all n. If $S = \{\sigma_n : n \in \mathbb{N}\}$, then X is dendric if and only if σ labels infinite paths in both $\mathcal{G}^L(S)$ and $\mathcal{G}^R(S)$.

Thank you for your attention!